The Convolution Sums

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The spectral decomposition of shifted convolution sums

Let π1, π2 be cuspidal automorphic representations of PGL2(R) of conductor 1 and Hecke eigenvalues λπ1,2 (n), and let h > 0 be an integer. For any smooth compactly supported weight functions W1,2 : R → C and any Y > 0 a spectral decomposition of the shifted convolution sum

متن کامل

Shifted Convolution Sums Involving Theta Series

Let f be a cuspidal newform (holomorphic or Maass) of arbitrary level and nebentypus and denote by λf (n) its n-th Hecke eigenvalue. Let r(n) = # { (n1, n2) ∈ Z : n21 + n22 = n } . In this paper, we study the shifted convolution sum Sh(X) = ∑ n≤X λf (n+ h)r(n), 1 ≤ h ≤ X, and establish uniform bounds with respect to the shift h for Sh(X).

متن کامل

Convolution Sums of Some Functions on Divisors

One of the main goals in this paper is to establish convolution sums of functions for the divisor sums σ̃s(n) = ∑ d|n(−1)d and σ̂s(n) = ∑ d|n(−1) n d d, for certain s, which were first defined by Glaisher. We first introduce three functions P(q), E(q), and Q(q) related to σ̃(n), σ̂(n), and σ̃3(n), respectively, and then we evaluate them in terms of two parameters x and z in Ramanujan’s theory of ell...

متن کامل

A Monotonic Convolution for Minkowski Sums

We present a monotonic convolution for planar regions A and B bounded by line and circular arc segments. The Minkowski sum equals the union of the cells with positive crossing numbers in the arrangement of the convolution, as is the case for the kinetic convolution. The monotonic crossing number is bounded by the kinetic crossing number, and also by the maximum number of intersecting pairs of m...

متن کامل

Polygonal Minkowski Sums via Convolution : Theory and Practice

This thesis studies theoretical and practical aspects of the computation of planar polygonal Minkowski sums via convolution methods. In particular we prove the “Convolution Theorem”, which is fundamental to convolution based methods, for the case of simple polygons. To the best of our knowledge this is the first complete proof for this case. Moreover, we describe a complete, exact and efficient...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: British Journal of Mathematics & Computer Science

سال: 2014

ISSN: 2231-0851

DOI: 10.9734/bjmcs/2014/9704